Ekstraksi Ciri dalam dunia sinyal

Oleh = Mochammad Haldi Widianto

Ekstraksi Ciri Bentuk

Untuk membedakan bentuk objek satu dengan objek lainnya, dapat menggunakan parameter yang disebut dengan ‘eccentricity’. Eccentricity merupakan nilai perbandingan antara jarak foci ellips minor dengan foci ellips mayor suatu objek. Eccentricity memiliki rentang nilai antara 0 hingga 1. Objek yang berbentuk memanjang/mendekati bentuk garis lurus, nilai eccentricitynya mendekati angka 1, sedangkan objek yang berbentuk bulat/lingkaran, nilai eccentricitynya mendekati angka 0. Penghitungan eccentricity diilustrasikan pada gambar di bawah ini:

. Ekstraksi Ciri Ukuran

Untuk membedakan ukuran objek satu dengan objek lainnya dapat menggunakan parameter luas dan keliling. Luas merupakan banyaknya piksel yang menyusun suatu objek. Sedangkan keliling merupakan banyaknya piksel yang mengelilingi suatu objek. Materi mengenai pemrograman matlab untuk menghitung luas dan keliling suatu objek dapat dilihat pada laman berikut ini: Cara menghitung luas dan keliling suatu citra

Ekstraksi Ciri Geometri

Ciri geometri merupakan ciri yang didasarkan pada hubungan antara dua buah titik, garis, atau bidang dalam citra digital. Ciri geometri di antaranya adalah jarak dan sudut. Jarak antara dua buah titik (dengan satuan piksel) dapat ditentukan menggunakan persamaan euclidean, minkowski, manhattan, dll. Jarak dengan satuan piksel tersebut dapat dikonversi menjadi satuan panjang seperti milimeter, centimeter, meter, dll dengan cara membaginya dengan resolusi spasial (materi mengenai perhitungan jarak dapat dilihat pada laman berikut ini: Cara mengukur jarak antara dua objek dalam citra). Sedangkan sudut antara dua buah garis dapat ditentukan dengan perhitungan trigonometri maupun dengan analisis vektor.

Ekstraksi Ciri Tekstur

Untuk membedakan tekstur objek satu dengan objek lainnya dapat menggunakan ciri statistik orde pertama atau ciri statistik orde dua. Ciri orde pertama didasarkan pada karakteristik histogram citra. Ciri orde pertama umumnya digunakan untuk membedakan tekstur makrostruktur (perulangan pola lokal secara periodik). Ciri orde pertama antara lain: mean, variance, skewness, kurtosis, dan entropy. Sedangkan ciri orde dua didasarkan pada probabilitas hubungan ketetanggaan antara dua piksel pada jarak dan orientasi sudut tertentu. Ciri orde dua umumnya digunakan untuk membedakan tekstur mikrostruktur (pola lokal dan perulangan tidak begitu jelas). Ciri orde dua antara lain: Angular Second Moment, Contrast, Correlation, Variance, Inverse Different Moment, dan Entropy.

Analisis tekstur juga dapat dilakukan dalam domain frekuensi antara lain menggunakan filter bank gabor.

Referensi:

  1. https://pemrogramanmatlab.com/pengolahan-citra-digital/ekstraksi-ciri-citra-digital/
  2. https://pemrogramanmatlab.com/pengenalan-pola-citra-digital-menggunakan-matlab/pola-bentuk-morfologi/