Geospatial Artificial Intelligence (GeoAI) for Oil Palm Tree Counting and Health Assessment

Syllabus
πΒ Duration: 2 Days (16 Hours)
π₯ Level: Intermediate to Advanced
πΌΒ Target Participants:
- Geospatial practitioners,
- Agricultural/plantation researchers,
- Data analysts,
- Masterβs/PhD students,
- Technical staff in palm oil companies.
πMethod: Combination of lectures, hands-on practices, and case studies.
πΒ Day 1 β Session 1: Introduction and Fundamentals of GeoAI
Topics:
-
Overview of GeoAI and Its Role in the Oil Palm Industry
-
Remote Sensing for Agriculture: UAV, Satellite, and Multispectral Data
-
Introduction to Monitoring Needs in Oil Palm Plantations
Learning Objectives:
-
Understand basic concepts of GeoAI and its applications in the palm oil sector.
-
Identify geospatial data sources (UAV, Sentinel-2, PlanetScope, etc.).
-
Explain business and technical requirements for monitoring oil palm plantations.
πΒ Day 1 β Session 2: Data Acquisition and Preprocessing
Topics:
-
UAV Mission Planning and Data Collection
-
Orthomosaic Generation and Georeferencing
-
Satellite Imagery Preprocessing
-
Annotation and Labeling Techniques for AI Training
Learning Objectives:
-
Conduct UAV data acquisition for oil palm plantations.
-
Generate orthomosaic maps and perform geometric corrections.
-
Prepare imagery datasets for AI model training.
-
Use QGIS and LabelImg/Roboflow for data annotation and labeling.
πΒ Day 2 β Session 1: AI for Oil Palm Tree Counting
Topics:
-
Deep Learning Fundamentals for Object Detection
-
CNN and YOLOv5/YOLOv8 for Tree Counting
-
Transfer Learning and Model Evaluation
-
Practice: Train a Model Using Oil Palm Dataset
Learning Objectives:
-
Understand object detection algorithms (YOLO, Faster R-CNN) for palm tree identification.
-
Train and evaluate AI models using UAV or satellite datasets.
-
Perform automated tree counting and validate results with field data.
πΒ Day 2 β Session 2: Tree Health Assessment and Classification
Topics:
-
Vegetation Indices (NDVI, GNDVI, SAVI) and Tree Health Indicators
-
Semantic Segmentation with U-Net/DeepLab
-
Integrating Spectral and Textural Features
-
Case Study: Health Mapping in Oil Palm Plantations
Learning Objectives:
-
Utilize vegetation indices to assess oil palm tree health.
-
Train image segmentation models for classifying healthy/unhealthy areas.
-
Analyze classification results and validate with field or high-resolution data.
πDay 2 β Session 3: GeoAI Dashboard & Deployment
Topics:
-
Spatial Analysis with Python (geopandas, rasterio, shapely)
-
Building a Simple GeoAI Dashboard (Streamlit or Dash)
-
Model Deployment and GIS Platform Integration
-
Group Project Presentation & Evaluation
Learning Objectives:
-
Integrate AI output with spatial data and map visualization.
-
Develop a dashboard prototype for monitoring oil palm plantations.
-
Design an end-to-end workflow from data acquisition to actionable insights.
-
Present project results and receive feedback from instructors.
Evaluation and Certification
-
Daily quizzes
-
Mini-project (individual or group)
-
Certificate awarded to participants with β₯80% attendance and who pass the final evaluation
Learning Outcomes:
By the end of the training, participants will be able to:
-
Understand the foundational concepts and benefits of GeoAI in the oil palm industry
-
Perform data acquisition, preprocessing, and analysis from UAVs, satellite imagery, and multispectral sensors
-
Apply deep learning models (YOLO, U-Net) to automatically count palm trees and assess their health
-
Integrate AI analysis with Geographic Information Systems (GIS)
-
Evaluate and validate model results using field data or high-resolution images
-
Apply an end-to-end pipeline from UAV mission planning to reporting insights for plantation management
Contact Information:
π§ wbudiharto@binus.edu
π± Widodo (WA: +62 856-9887-384)
π± Emny (WA: +62 813-8741-3863)
Silabus Pelatihan
Geospatial Artificial Intelligence (GeoAI) for Oil Palm Tree Counting and Health Assessment
π Durasi: 2 Hari (16 jam)
π₯Level: Intermediate to Advanced
πΌΒ Β Metode: Teori (kuliah), praktik langsung (hands-on), dan studi kasus interaktif
πTarget Peserta:
-
Praktisi geospasial
-
Peneliti di bidang pertanian/perkebunan
-
Analis data
-
Mahasiswa S2/S3
-
Staf teknis perusahaan kelapa sawit
πHari 1 β Fondasi GeoAI dan Pengolahan Data Geospasial
Sesi 1: Pengenalan dan Dasar-dasar GeoAI
Topik:
-
Pengantar GeoAI dan perannya dalam industri kelapa sawit
-
Penginderaan jauh untuk pertanian: UAV, citra satelit, data multispektral
-
Kebutuhan pemantauan perkebunan kelapa sawit secara digital
Learning Outcomes:
-
Memahami konsep dan manfaat GeoAI
-
Mengenali berbagai sumber data geospasial (UAV, Sentinel-2, PlanetScope)
-
Menjelaskan kebutuhan teknis dan bisnis untuk pemantauan kelapa sawit
Sesi 2: Akuisisi dan Praproses Data
Topik:
-
Perencanaan misi UAV dan pengambilan data
-
Generasi orthomosaic dan georeferensi
-
Praproses citra satelit
-
Teknik anotasi dan labeling untuk pelatihan AI
Learning Outcomes:
-
Melakukan akuisisi data UAV secara efisien
-
Menghasilkan orthomosaic dan koreksi geometrik
-
Menyiapkan dataset untuk pelatihan model AI
-
Melakukan labeling menggunakan QGIS, LabelImg, atau Roboflow
πΒ Hari 2 β Pemodelan AI dan Implementasi Lapangan
Sesi 1: Pendeteksian Pohon Kelapa Sawit dengan AI
Topik:
-
Dasar Deep Learning untuk Object Detection
-
Penerapan CNN dan YOLOv5/YOLOv8
-
Transfer learning dan evaluasi model
-
Latihan: Melatih model deteksi pohon
Learning Outcomes:
-
Memahami model deteksi objek (YOLO, Faster R-CNN)
-
Melatih model berbasis UAV/satelit untuk menghitung pohon
-
Melakukan perbandingan hasil deteksi dengan data lapangan
Sesi 2: Penilaian Kesehatan Pohon dan Klasifikasi
Topik:
-
Indeks vegetasi (NDVI, GNDVI, SAVI)
-
Segmentasi semantik dengan U-Net / DeepLab
-
Integrasi fitur spektral dan tekstural
-
Studi kasus: Health Mapping di perkebunan
Learning Outcomes:
-
Menggunakan indeks vegetasi untuk klasifikasi kesehatan pohon
-
Melatih dan menguji model segmentasi citra
-
Menganalisis hasil klasifikasi dan validasi lapangan
Sesi 3: Dashboard GeoAI dan Implementasi Sistem
Topik:
-
Analisis spasial dengan Python (GeoPandas, Rasterio, Shapely)
-
Membangun dashboard dengan Streamlit atau Dash
-
Integrasi model AI ke platform GIS
-
Presentasi proyek kelompok
Learning Outcomes:
-
Menggabungkan hasil AI dengan visualisasi spasial
-
Membangun prototipe dashboard monitoring
-
Menyusun workflow end-to-end dari data ke insight
-
Mendapatkan umpan balik atas hasil proyek
Evaluasi dan Sertifikasi
-
Kuis harian
-
Mini project (individu/kelompok)
-
Sertifikat diberikan kepada peserta yang:
-
Mengikuti β₯80% sesi
-
Lulus evaluasi akhir
-
Hasil Akhir Pelatihan
Setelah mengikuti pelatihan ini, peserta diharapkan mampu:
-
Memahami peran dan manfaat GeoAI dalam pengelolaan kelapa sawit
-
Melakukan akuisisi, praproses, dan analisis data geospasial dari UAV & citra satelit
-
Menerapkan model deep learning seperti YOLO dan U-Net untuk menghitung pohon dan menilai kesehatannya
-
Mengintegrasikan hasil AI ke dalam sistem GIS
-
Melakukan evaluasi dan validasi berbasis data lapangan
-
Menyusun pipeline GeoAI end-to-end: dari akuisisi hingga pelaporan
Kontak Informasi
π§ Email: wbudiharto@binus.edu
π± Widodo (WA): 0856-9887-384
π± Emny (WA): 0813-8741-3863
Comments :